Erstellt am Mittwoch, den 08. Oktober 2008 um 20:04 Uhr Zuletzt aktualisiert am Donnerstag, den 14. März 2013 um 01:29 Uhr Geschrieben von: Batuhan Osmanoglu Zugriffe: 41198 Moving Average In Matlab Oft finde ich mich in der Notwendigkeit der Mittelung der Daten, die ich habe, um das Rauschen ein wenig zu reduzieren Bit. Ich schrieb paar Funktionen, um genau das tun, was ich will, aber Matlabs in Filter-Funktion gebaut funktioniert auch ziemlich gut. Hier schreibe ich über 1D und 2D Mittelung von Daten. 1D-Filter kann mit der Filterfunktion realisiert werden. Die Filterfunktion erfordert mindestens drei Eingangsparameter: den Zählerkoeffizienten für den Filter (b), den Nennerkoeffizienten für den Filter (a) und natürlich die Daten (X). Ein laufender Mittelwertfilter kann einfach definiert werden: Für 2D-Daten können wir die Funktion Matlabs filter2 verwenden. Für weitere Informationen, wie der Filter funktioniert, können Sie eingeben: Hier ist eine schnelle und schmutzige Implementierung eines 16 von 16 gleitenden durchschnittlichen Filters. Zuerst müssen wir den Filter definieren. Da alles, was wir wollen, gleicher Beitrag aller Nachbarn ist, können wir einfach die Funktion verwenden. Wir teilen alles mit 256 (1616), da wir nicht den allgemeinen Pegel (Amplitude) des Signals ändern wollen. Zur Anwendung des Filters können wir einfach sagen, die folgenden Unten sind die Ergebnisse für die Phase eines SAR-Interferogramms. In diesem Fall ist der Bereich in der Y-Achse und der Azimut auf der X-Achse abgebildet. Der Filter war 4 Pixel breit in Range und 16 Pixel breit in Azimuth. Using MATLAB, wie finde ich die 3-Tage gleitenden Durchschnitt einer bestimmten Spalte einer Matrix und hängen Sie den gleitenden Durchschnitt zu dieser Matrix Ich versuche, die 3 zu berechnen Tage-Durchschnitt von unten nach oben der Matrix. Ich habe meinen Code: Angesichts der folgenden Matrix a und Maske: Ich habe versucht Umsetzung der conv Befehl, aber ich erhalte einen Fehler. Hier ist der Befehl conv, den ich versucht habe, auf der 2. Spalte der Matrix a zu verwenden: Die Ausgabe, die ich wünsche, wird in der folgenden Matrix gegeben: Wenn Sie irgendwelche Vorschläge haben, würde ich es sehr schätzen. Vielen Dank für die Spalte 2 der Matrix a, ich bin die Berechnung der 3-Tage gleitenden Durchschnitt wie folgt und platziert das Ergebnis in Spalte 4 der Matrix a (Ich umbenannt Matrix a als 39desiredOutput39 nur für Abbildung). Der 3-tägige Durchschnitt von 17, 14, 11 ist 14 der dreitägige Durchschnitt von 14, 11, 8 ist 11 der 3-tägige Durchschnitt von 11, 8, 5 ist 8 und der 3-Tage-Durchschnitt von 8, 5, 2 ist 5. Es gibt keinen Wert in den unteren 2 Zeilen für die 4. Spalte, da die Berechnung für den dreitägigen gleitenden Durchschnitt an der Unterseite beginnt. Die 39valid39 Ausgabe wird nicht angezeigt, bis mindestens 17, 14 und 11. Hoffentlich macht dies Sinn ndash Aaron 12 12 13 am 1:28 Im Allgemeinen würde es helfen, wenn Sie den Fehler anzeigen würde. In diesem Fall tun Sie zwei Dinge falsch: Zuerst muss Ihre Faltung durch drei (oder die Länge der gleitenden Durchschnitt) geteilt werden Zweitens beachten Sie die Größe von c. Sie können nicht einfach passen c in eine. Der typische Weg, um einen gleitenden Durchschnitt wäre, um die gleiche: aber das sieht nicht wie Sie wollen. Stattdessen sind Sie gezwungen, ein paar Zeilen zu verwenden: 29 September, 2013 Moving Durchschnitt durch Convolution Was ist gleitend Durchschnitt und was ist es gut für Wie ist die gleitende Mittelung durch Faltung durchgeführt Moving Average ist eine einfache Operation verwendet, um in der Regel zu unterdrücken Rauschen einer Signal: Wir setzen den Wert jedes Punktes auf den Mittelwert der Werte in seiner Umgebung. Nach einer Formel: Hier ist x die Eingabe und y das Ausgangssignal, während die Größe des Fensters w ist, die ungerade sein soll. Die obige Formel beschreibt eine symmetrische Operation: Die Proben werden von beiden Seiten des aktuellen Punktes genommen. Unten ist ein Beispiel aus dem wirklichen Leben. Der Punkt, auf dem das Fenster gelegt wird, ist tatsächlich rot. Werte außerhalb x sind Nullen: Um zu spielen und sehen die Auswirkungen der gleitenden Durchschnitt, werfen Sie einen Blick auf diese interaktive Demonstration. Wie man es durch Faltung erkennt Wie Sie vielleicht erkannt haben, ist die Berechnung des einfachen gleitenden Durchschnittes ähnlich der Faltung: In beiden Fällen wird ein Fenster entlang des Signals geschoben und die Elemente im Fenster zusammengefasst. Also, geben Sie ihm einen Versuch, die gleiche Sache zu tun, indem Sie Faltung. Verwenden Sie die folgenden Parameter: Die gewünschte Ausgabe ist: Als erster Ansatz versuchen wir, was wir durch Faltung des x-Signals durch den folgenden k-Kernel erreichen: Der Ausgang ist genau dreimal größer als erwartet. Es ist auch ersichtlich, dass die Ausgabewerte die Zusammenfassung der drei Elemente im Fenster sind. Es ist, weil während der Faltung das Fenster entlang geschoben wird, werden alle Elemente in ihm mit einem multipliziert und dann zusammengefasst: yk 1 cdot x 1 cdot x 1 cdot x Um die gewünschten Werte von y zu erhalten. Wird die Ausgabe durch 3 geteilt: Durch eine Formel mit der Teilung: Aber wäre es nicht optimal, die Teilung während der Konvolution zu machen Hier kommt die Idee, indem wir die Gleichung umordnen: So werden wir den folgenden k Kernel verwenden: Auf diese Weise werden wir Erhalten Sie die gewünschte Ausgabe: Im Allgemeinen: wenn wir gleitenden Durchschnitt durch Faltung mit einer Fenstergröße von w machen wollen. Verwenden wir den folgenden k-Kernel: Eine einfache Funktion, die den gleitenden Durchschnitt ausführt, ist: Eine Beispielnutzung ist:
No comments:
Post a Comment